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On the one-dimensional Coulomb Hamiltonian 

F Gesztesyt 
Institut fur Theoretische Physik, Universitat Graz, A-8010 Graz, Austria 

Received 11 May 1979 

Abstract. We give a rigorous definition of the one-dimensional Coulomb Hamiltonian, 
discuss its spectral properties, and investigate various approximations for it. For one of 
these approximations, which is frequently used in the literature, we prove in particular that 
it converges to the semi-bounded Coulomb Hamiltonian in the strong graph limit, although 
its ground-state energy tends to minus infinity in this limit. 

1. Introduction 

Recently Mehta and Patil (1978) and van Haeringen (1978) investigated modified 
Coulomb interactions of the form 

which correspond to a smeared charge distribution (rather than a point charge) and thus 
may be useful for the description of mesic atoms. For this potential Mehta and Patil 
(1978) proved dispersion relations and an approximation (as (Y + 0,) for the s-wave 
bound states, and van Haeringen (1978) discussed the bound states of the correspond- 
ing one-dimensional Schrodinger operator. The aim of this paper is to give a rigorous 
description of the one-dimensional Coulomb Hamiltonian H (see equations (2.6) and 
(2.7) below) and its spectral properties. We also discuss two approximations, involving 
the potential ( l . l ) ,  which we prove to converge to U in the norm, or respectively in the 
strong resolvent sense as CY + 0,. (The s-waves of the three-dimensional problem are 
obviously contained in our treatment.) In particular, we prove that the strong graph 
(resolvent) limit of the approximation T, (see equations (3.1) and (3.2)) used by van 
Haeringen (1978) and Loudon (1959) converges to H. Since &(a),  the ground-state 
energy of this approximation T,, behaves like 

E ~ ( ( Y )  = -c2  In2 (-2ca) ICCY 1 K 1 (1.2) 

and thus diverges as CY + O,, it was sometimes conjectured that the one-dimensional 
Coulomb Hamiltonian H has no ground state (Loudon 1959, van Haeringen 1978). In 
contrast to this conjecture we prove that H is bounded from below by 

H 3 -c2/4 (1.3) 

with -c2/4 being the ground-state energy of H. The main feature of functions 
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contained in the domain of H is that they obey a Dirichlet boundary condition at the 
origin due to the singular character of l/lxl. (For similar kinds of operators see Harrell 
(1977) and references therein.) 

2. The Coulomb Hamiltonian 

Let 

V(X) = 4 x 1  c ~ R , c f O  

and define 

on D (ri) = C? ( R  - (0)). (2.2) 
d2 

dx 
H = --+ V(X) 

Then 2, the closure of fi, is given by 

- d2 ri = --y+ V(x) 
dx D ( k )  = {flf, f’ EAI,,(R); f ( 0 )  =f ’ (o)  = 0 ;  f , f ’ ,  ~ “ E L * ( R ) )  

(2.3) 

i.e. 

2 = H ,  o H- + v (2.4) 

where 

D(H*) ={ f l f , f ’~A~o~(R*) ; f (O*)=f ’ (O*)  = o ; f , f ’ , f ” ~ L ~ ( R + ) ) .  
d2 

* -  dx2 
H 

(2.5) 

Alo,(u, b )  denotes the set of locally absolutely continuous functions on (U ,  6 )  and R ,  
dencites the interval R ,  = (0, *CO). 

We shall see, by virtue of (2.10), that k is well defined, semi-bounded and closed 
but not self-adjoint. As a natural self-adjoint extension we take the Friedrichs 
extension H of ri: 

H = H o + V  D ( H ) = D ( H D )  ( 2 . 6 )  

where HD is the Friedrichs extension of H+@H- (with a Dirichlet boundary condition 
at the origin): 

(i.e. HD = H + F @ H - ~ ) .  Here f’ E Al,,(R - { O ) )  means that f’(x) E A1,,(O, CO) for x > 0 
andf’(x) E Aloc(-CO, 0) for x < 0, but possiblyf’(O+) # f ’ (0-);  f ( 0 )  = 0 is to be interpreted 
as f ( O , ) = f ( O - ) = O .  To show that H is well defined we note that from Hardy’s 
inequality 

“11’11 2 x  llf’ll Ilf’ll+ + llf’ll- f ( 0 )  = 0 ;  f ,  f’ E L2(R)  (2.8) 

(the subscripts refer to the norms in L2(R+), respectively), together with the fact that 
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dldx is infinitesimally bounded with respect to d2/dx2 in L2(R*),  i.e. 

(2.9) 
L 

llf’ll* Ellf”ll* +;llfll* 

IIVfllS ~lIHDfll+~llfll 

E > 0 ;  f, f’, f” E LZ(R*) 

we infer 

E >O;f€D(Ho). (2.10) 
2 

Thus V is infinitesimally bounded with respect to HD. 
Note that for the s-wave Hamiltonian in the three-dimensional problem one 

automatically takes the Friedrichs extension (characterised by the boundary condition 
f(O+) = 0 )  of 

H+ + V(r) in L’(R+) 
since - A +  V(lx1) is not essentially self-adjoint on C,“ (R3-{O}).  

Next we turn to the sesquilinear forms h, h D  and hv corresponding to H, HD and V: 

h ( f , g ) = h o ( f , g ) + h v ( f , g )  D ( h  = (hD ) (2.11) 

h D ( f ,  g )  = (f’, g ’ )  (2.12) D ( h D )  = { f l f E  Aloc(R); f(o) = 0 ;  f, f’E L 2 ( R ) )  

(2.13) 

Clearly, hv is infinitesimally bounded with respect to hD and 

h = G .  

Define 

We shall investigate the limit of H, as a + O +  and its spectral properties. Let us denote 
by R(A, z )  the resolvent ( A  - z)-’, by p(A) the resolvent set, by a ( A )  the spectrum, by 
a,,,(A) the essential spectrum, by aac(A) the absolutely continuous spectrum, by a J A )  
the point spectrum, and by ad(A) the discrete spectrum of a self-adjoint operator A. 
Then we have: 

Lemma 2.1. (a) If c > 0 then 

a(Hcx)=~ac(Ha)=[O,  a) 
and H, has no eigenvalues, 

a,(H,) = 0. 

(2.18) 

(2.19) 
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(2.20) 

(2.21) 

The point spectrum c p ( H a )  is purely discrete; it consists of infinitely many isolated 
eigenvalues, each of which has multiplicity two. For Ical<< 1 it is given by (Loudon 
1959, Mehta and Pari1 1978, van Haeringen 1978) 

(2.22) 

Proof. Suppose J, is an eigenvector of H, to the eigenvalue E ( a )  

Ha$ =E(a)J,. 

Then, using scale transformations one proves the virial theorem 

(2.23) 

Let c > O .  Then (2.23) implies 

Hence J, = 0 and (2.19) holds. To prove (2.18) we only note that Ha is the orthogonal 
sum of two self-adjoint operators, acting on L2(R+) and L2(R-) ,  respectively, whose 
spectra are purely absolutely continuous and cover [0, CO) (Weidmann 1967). Let c < 0. 
Then (2.23) implies 

are given by 

c 
Nexp[-J=(x + a ) ] ( x + a )  1 +--; 2; 2 J - E ( x + a )  

* y X )  = 4 24-E 
l o  
f0 

X 3 0  

x s o  

x a o  

(2.24) 

where V ( a ;  b ;  2) is the irregular confluent hypergeometric function and N is some 
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normalisation constant. The eigenvalues E, are determined by the equation 
I C 

1 +=; 2; 2J-Ea)  = 0. 4 24-E 
(2.25) 

For Ica 1 << 1 one can expand U to obtain the approximation (2.22) (cf Loudon 1959, 
Mehta and Patil 1978, van Haeringen 1978). From (van Haeringen 1978) 

tc/2\’-E (1 + t)-2-c/2’/-E > O  for c /2J -E>  -1 

one recognises that there are no zeros of (2.25) for E<-c2/4 .  Since obviously 
H, 2 c/a,  (2.20) is proved. The result (2.21) again follows from the fact that H, is an 
orthogonal sum of two self-adjoint operators whose essential spectra are absolutely 
continuous and cover [0, CO). 

Remark 2.1. (Mehta and Patil 1978). Let A > O  and U(A) be the unitary trans- 
formation which implements scaling: 

( U ( A  )f)(x) = A - - l ” f ( ~  - ‘X ) f E L2(R) .  

Then U(A)  leaves D(HD) invariant and, if we write H,(c) to exhibit explicitly the c 
dependence of H,, we obtain 

U ( A  )H,(c) U ( A  )-I = A 2 ~ A ,  (c/A) 

and consequently 

E,(c, a )  =A~E, (c /A ,  ha) .  

Next we consider the convergence of H, to H. 

(2.26) 

Lemma 2.2. Let z E p ( H ) .  Then z E p(H,) for a sufficiently small and R(H,, z )  
converges to R (H, z )  in norm as Q -+ 0,: 

lim IIR (Ha, z )  - R (H, z) / l= 0. (2.27) 
0 + O C  
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and we only need to apply Kat0 (1966, Theorem VI 3.6). (For detailed information 
about norm (strong) resolvent convergence compare Kat0 (1966), Reed and Simon 
(1972), Schechter (1976) and Simon (1978).) 

Now we turn to the operator H and state 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

and each eigenvalue has multiplicity two. The corresponding eigenspace is spanned by 
the functions 

C' 
a , ( ~ )   ad(^) = { E,IE, = -7, n = I, 2, .  . . 4n 

( 1 , ~ ' ( x ) = i \ i ' e x p ( ~ l x l ) 2 x L / ( l - n ; 2 ; - - j n )  C n = 1 , 2 , .  . .  
n 

(2.32) 

Proof. If $ is an eigenvector of H to the eigenvalue E the virial theorem reads 

2((1,, HD4) = -((1,, v(1,) = 2((1,, [ E -  VI$)* (2.33) 

Let c > 0. Then (2.33) implies ($, HD$) < 0 from which we conclude (1, = 0 and thus 
(2.29) is established. The result (2.28) follows as in the proof of lemma 1 ( a ( H )  = [O,m) 
already follows from (2.18) and (2.27)). Now we turn to c < 0. If (1, is an eigenfunction 
of H, (2.33) yields 

2E11(1,112 = (4, V(1,) < 0 ,  

hence E < O .  By inspection it is easily verified that E, = -c2/4n2, n = 1, 2, 3, . . . , are 
eigenvalues of multiplicity two and the functions of (2.32) are the corresponding 
eigenfunctions. (From (2.22) and strong resolvent convergence of Ha to H it follows 
that these E, are the only negative numbers contained in a(H) . )  The result (2.30) is 
proved by the same arguments used in the proof of lemma 1. 

3. The approximation T, 

From lemmas 2.1 and 2.2 one concludes that H, approximates H in a very natural 
manner. Despite this fact the approximations normally used (Loudon 1959; van 
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Haeringen 1978) are quite different from H,. Usually one introduces the sequence {T,} 

T, = T + V ,  D(T,) = D ( T )  (3.1) 
where 

As a tends to 0, the ground state energy Eo(a)  of T, tends to -a (see lemma 3.1 
below) and this was the reason why it was frequently conjectured (Loudon 1959, van 
Haeringen 1978) that the one-dimensional hydrogen Hamiltonian is not bounded from 
below. Because of theorem 2.1 this is obviously wrong and we shall prove that the 
strong graph limit of T, equals H or, equivalently, the resolvent of T, converges 
strongly to the resolvent of H as a + 0,. For that purpose we first give a description of 
d T , ) :  

cr,(T,)= 0. (3.4) 

uess(Ta) = c+ac(Ta) = [O, a) (3.5) 

(b) If c < 0 then 

and the point spectrum of T, consists of infinitely many isolated non-degenerate 
eigenvalues. For IcaI<< 1 they are approximately given by (Loudon 1959, van 
Haeringen 1978) 

~ b " '  = -c In (-2ca) 2 2  

n = 1 ,2 ,  . . . C 2  E',"' = - p ( 1 + 
n In(-ca) 

C 2  2 ca E?' = - p( 1 + --) n = 1 , 2 , .  . . 
(3.6) 

where (e) and (0) refer to the corresponding even and odd eigenfunctions, respectively. 

Proof. Suppose $ to be an eigenvector of T, with eigenvalue E. Then we have the virial 
theorem 

1 
2 4 ,  T4)  = -p, 1x1 v:$) = 2($, [E - Val$). (3.7) 

Let c > 0. Then (3.4) follows from (3.7) as in the proof of lemma 1. 
Since V, E L2(R)  we have for all c 

gess(Ta) = c + e s s ( T )  = [O, 00). 

The absolute continuity of the essential spectra follows from Weidmann (1967). That 
there are infinitely many eigenvalues for c < 0 already follows from the existence of 
A > 0, R > 0, such that (Weidmann 1976) 

V,(X) - A h 1  for 1x1 z R. 
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Non-degeneracy of the eigenvalues follows in the usual manner. Let 
eigenfunctions to a given eigenvalue E. Then 
L’(R) and so $;$z - $I$; = 0 using Schrodinger’s equation. Thus 

and odd solutions, respectively, 

and $z be two 
rClz€D(T) implies $ i$z -$ l~~ i  E 

=constant x $z. 
Finally the expressions (3.6) are obtained from the eigenvalue conditions for even 

and 

U(&; 0; 2 J Z a )  = 0. (3.8) 

Since the scale transformation U(A) leaves D(  T )  invariant too, (2.26) remains valid for 
all eigenvalues of T,. To prove convergence of T, to H in the strong graph (resolvent) 
sense we first state a criterion due to Wust (1973): 

Lemma 3.2. Suppose 

and D(A,)  = D for all a E (O,aO]; 
(a) {A,},  a E (0 ,  ao],  ao> 0 is a family of self-adjoint operators in a Hilbert space H 

(b) A, - A ,  3 0  for all a, p E (0, aO] with a 3 p  (or p 2 a ) ;  
(c) (A,  - A p )  is bounded for all a, p E (0, a03 and 

lim / / (A,  -Ap)ll = 0 for all a, p E (0 ,  aO];  
a+, 

(d) there exist constants A E R ,  p > 0 such that 

(e) {A,}  is strongly graph convergent to an operator A.  as cy + 0,. 
Then the resolvents of A,  converge strongly to the resolvent of Ao: 

s-lim R (A,, z )  = R (Ao, z )  I m z Z O  
,-to+ 

and the graph limit AO is self-adjoint. Thus D(Ao) is given by 

D(Ao)  = { f ~  HI there are f a  ED:  liin l l f ,  - f l l =  0 and s-lim A , f ,  exists}. 

(For graph limits see Glimm and Jaffe (1969), Reed and Simon (1972,1975) and Wust 
1973.) This result applied to the family {T,} yields 

Q +o+ ,-to+ 

Theorem 3.1. The operator H is the strong graph limit of T, as cy + 0, 

s-graph-lim T, = H (3.9) 
Q + O +  

or, equivalently, for Im z # 0, R (T,, z )  converges strongly to R (H, z ) :  

s-lim R (T,, t) = R (H, z )  I m z f O .  
a -to+ 

(3.10) 
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Proof. We have to check (a)-(e) of lemma 3.2. By definition (a) and (b) are fulfilled. V, 
is bounded for a > 0, hence (c) is true. If c > 0 then (d) is valid because of T, 3 0. For 
c < O  and / ca /  << 1 there is a gap between Et '  and -c2/4 by lemma 3.1 and hence (d) is 
fulfilled in this case too. By the dominated convergence theorem we have 
s-lim,,o+ T, f = Hf for f E D(HD) n D ( T ) ,  hence (e) is true. By lemma 3.2 the strong 
graph limit of T, is self-adjoint. It clearly coincides with H. Since T,, H are 
self-adjoint, strong graph convergence is equivalent to strong resolvent convergence, 
which completes the proof. 

The results of lemma 3.1 and theorem 3.1 are certainly not restricted to the special 
choice V,(x)  = c/((x/ + a); they still hold if some similar bounded approximation c,(x) 
is used (e.g. the cut-off approximation to be found in Loudon (1959)). 

From theorem 3.1 one infers that in going from T, to H one encounters a Dirichlet 
boundary condition at zero and in addition the ground-state energy Et '  (a) disappears 
in the limit a + O,, i.e. it is not contained in the spectrum of H. Nevertheless the 
approximation T, converges to the Coulomb Hamiltonian H in a reasonable sense for 
a + 0, and all of its other eigefivalues converge to the corresponding ones of H. 
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